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A simple method for construction of eigenfunctions of one-electron spin angular momen-
tum operators from products of the primitive one-electron spin functions is presented. Proper-
ties of these functions and their applications to the evaluation of some integrals met in theory
of quantum similarity are briefly discussed.
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1. Introduction

Some of the similarity measures appearing in the theory of quantum similarity
may be expressed in terms of integrals involving products ofN-electron density func-
tions [1,2]:
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]= ∫
�ab

ρa
kρ

b
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In equation (1)ρa
k andρb

� denote the densities corresponding, respectively, to states�a
k

and�b
� of two quantum systems labeled as a and b. If a= b then equation (1) defines

a measure of similarity between two states of the same quantum system. Furthemore, if
k = �, the integral (1) defines a quantum self-similarity measure. Usually the densities
depend upon both coordinates and spins of the electrons. The integration range�ab

covers the area over which the similarity index has been defined and, in most cases, it is
the entire space of electron coordinates and spins.

The evaluation of the coordinate-dependent part of integral (1), from a technical
point of view, does not present any particular difficulty – it usually may be reduced to
some specific overlap-like integrals or to some other well known quantum-mechanical
quantities [2]. Technical novelties may appear in connection with the integrals over
spin variables. The aim of this note is to present an algorithm for the evaluation of the
integrals

Qσ [�k,��] =
〈
�k(σ )

∣∣��(σ )
〉

(2)
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over spin variablesσ associated with the similarity indexQ[ρa
k, ρ

b
� ].

2. Basic definitions

Let �(j,m) be a one-electron eigenfunction of the square of the angular momen-
tum operator,Ĵ 2, and of its projectionĴz. Then, we have

Ĵ 2�(j,m) = j (j + 1)�(j,m), Ĵz�(j,m) = m�(j,m), (3)

and 〈
�(j,m)

∣∣�(
j ′,m′

)〉 = δjj ′δmm′ . (4)

The functions corresponding toj = 1
2 andm = 1

2,−1
2 are denotedα andβ:

α ≡ �
(

1
2,

1
2

)
, β ≡ �

(
1
2,−1

2

)
. (5)

The ladder operators

Ĵ+ = Ĵx + iĴy and Ĵ− = Ĵx − iĴy

act on�(j,m) in the well-known manner:

Ĵ+�(j,m)=√
j (j + 1)−m(m+ 1) �(j,m+ 1), (6)

Ĵ−�(j,m)=√
j (j + 1)−m(m− 1) �(j,m− 1). (7)

For the purpose of this paper it is convenient to representĴ+ and Ĵ− as differential
operators acting in the spin space [3]:

Ĵ+ = α
∂

∂β
, Ĵ− = β

∂

∂α
. (8)

The spin integrals appearing in evaluation ofQ[ρa
k, ρ

b
� ] defined in equation (1) are,

in general, reducible to

Qσ
[
�,�′

] = N∏
j=1

〈
�pjqj (j)

∣∣�p′j q ′j (j)
〉
, (9)

where

�pjqj (j) = αpj (j)βqj (j), (10)

α andβ are the primitive one-electron spin functions and the indexj refers to thej th
electron.

Functions composed of products ofp + q > 1 of the primitive one-electron spin
functions will be referred to hereafter as thegeneralized spin functions. In order to
evaluate integrals involving the generalized spin functions we express them in terms of
the normalized eigenfuctions of the one-electron spin operators. For simplicity, these
operators are denoted hereafterĴ 2 andĴz and their eigenfunctions are�(j,m).
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3. Generalized one-electron spin functions

If we assume that

�

(
n

2
,
n

2

)
= f (j)αnβ0, (11)

then, after acting on the right-hand-side of equation (11) with operatorĴ− defined in
equation (8) and transforming the left-hand-side according to equation (7), we get
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2
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√
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(
n

2
,
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2
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)
= f (j)n(n− 1)(n− 2)αn−3β3,

...

Hence, in general,

�(j,m) = f (j)

√
(2j)!

(j +m)!(j −m)!α
j+mβj−m, (12)

with m = −j,−j + 1, . . . , j andf (j) selected so that〈�(j,m)|�(j,m)〉 = 1.
The Clebsh–Gordan expansion for the spin functions�(j,m)may be written as [4]
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√
j +m

2j
�

(
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2

)
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2j
�

(
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2

)
β. (13)

By substitution of equation (12) to (13), after some simple algebra, we get
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2j
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2

)[√
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√
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]

and from here

f (j) = f
(
j − 1

2

)
. (14)

Takingj = 1
2, i.e.,m = ±1

2, equation (12) becomes
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(
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)
β.

Then, due to equation (5),f (1
2) = 1. Consequently, by recursively using equation (14)

we getf (j) = 1.
Equation (13) may be used for the genealogical construction of the one-electron

spin functions�(j,m) from �(j − 1
2,m

′). However, as we know from the general
theory of coupling angular momenta, the angular momentum eigenstate�(j,m) may
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also be obtained by coupling�(j + 1
2,m ± 1

2) with �(1
2,∓1

2). The resulting equation
reads

�(j,m) = −
√
j −m+ 1

2j + 2
�

(
j + 1
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2

)
α+
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j +m+ 1

2j + 2
�

(
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2

)
β. (15)

As one can easily check by substitution of equation (12) in the right-hand-side of equa-
tion (15), in this case�(j,m) = 0. This result is in agreement with equation (12): there
is only one genealogical path of construction of a generalized spin function, defined by
equation (13). If�(j,m) is multiplied by a primitive spin function then the value ofj

in the resulting generalized spin function always increases.

4. Integrals

Since all products of the primitive one-electron spin functions may be expressed
in terms of�(j,m), all integrals involving these products may be evaluated by using
the orthogonality relation given by equation (4). In order to illustrate the approach we
elaborate in detail the case ofN = 2.

Let us assume that�a
k is associated with a two-electron spin functionXa

m(σ1, σ2)

and�b
� with Xb

m′(σ1, σ2), where{Xa
m,X

b
m′ } = {S0, T−1, T0, T1}, σ1, σ2 are spin coordi-

nates of the electrons and

S0(σ1, σ2)≡ 1√
2

[
α(σ1)β(σ2)− β(σ1)α(σ2)

]
,

T−1(σ1, σ2)≡ β(σ1)β(σ2),

T0(σ1, σ2)≡ 1√
2

[
α(σ1)β(σ2)+ β(σ1)α(σ2)

]
,

T1(σ1, σ2)≡ α(σ1)α(σ2).

According to equation (12), there are three generalized one-electron spin functions
which may be constructed from products of two primitive one-electron spin functions:

T−1(σ1)≡�(1,−1) = α2,

T0(σ1)≡�(1,0) = √2 αβ,

T1(σ1)≡�(1,1) = β2.

Let us note that

Tm(σ1) = lim
σ2→σ1

Tm(σ1, σ2). (16)

Due to equations (13) and (15) the analogous rule also applies in the general case.
After some simple algebra we get∣∣S0(σ1, σ2)

∣∣2= 1
2

[
T1(σ1)T−1(σ2)− T0(σ1)T0(σ2)+ T1(σ1)T−1(σ2)

]
,∣∣T−1(σ1, σ2)

∣∣2= T−1(σ1)T−1(σ2),
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∣∣T0(σ1, σ2)
∣∣2= 1

2

[
T1(σ1)T−1(σ2)+ T0(σ1)T0(σ2)+ T1(σ1)T−1(σ2)

]
,∣∣T1(σ1, σ2)

∣∣2= T1(σ1)T1(σ2). (17)

Consequently,

Qσ
[∣∣Xm(σ1, σ2)

∣∣2
,
∣∣X′m′(σ1, σ2)

∣∣2] = 3+ |m|
4

δXX′δmm′, (18)

where{X,X′} = {S, T } andQσ
[
Xm,X

′
m′

]
is defined in equation (2).

A generalization of this procedure to a many-electron case is straightforward,
though specific implementations may be tedious ifN is sufficiently large. Using equa-
tion (12) we can transform an arbitrary product of the primitive one-electron spin func-
tions α andβ of a given electron to a normalized function�(j,m). Then, applying
equation (4) one can perform all the integrations involved.

Acknowledgements

The authors want to acknowledge the Foundation M.F. de Roviralta as well as the
European Commision contract # ENV4-CT97-0508, the CICYT project #SAF2000-223
and the Polish KBN project # 2 P03B 126 14 which have supported this work. The
visiting professorship provided for one of us (J.K.) by CEPBA is also gratefully ac-
knowledged.

References

[1] R. Carbó-Dorca and E. Besalú, Extended Sobolev and Hilbert spaces and approximate stationary so-
lutions for electronic systems with the non-linear Schrödinger equation, Institute of Computational
Chemistry, Technical report IT-IQC-00-25.

[2] R. Carbó-Dorca, Ll. Amat, E. Besalú, X. Gironés and D. Robert, J. Mol. Structure (Theochem) 504
(2000) 181.

[3] R.N. Zare,Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics(Wiley, New
York, 1988).

[4] A. Messiah,Mécanique Quantique, Vol. 2 (Dunod, Paris, 1960).


