Generalized one-electron spin functions and self-similarity measures

E. Besalú^a, R. Carbó-Dorca^a and J. Karwowski^b

^a Institut de Química Computational, Universitat de Girona, Girona 17071, Spain ^b Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń, Poland

Received 15 November 2000

A simple method for construction of eigenfunctions of one-electron spin angular momentum operators from products of the primitive one-electron spin functions is presented. Properties of these functions and their applications to the evaluation of some integrals met in theory of quantum similarity are briefly discussed.

KEY WORDS: quantum similarity measures, one-electron spin functions, coupling of angular momenta, spin density

1. Introduction

Some of the similarity measures appearing in the theory of quantum similarity may be expressed in terms of integrals involving products of N-electron density functions [1,2]:

$$Q[\rho_k^{\rm a}, \rho_\ell^{\rm b}] = \int_{\Omega_{ab}} \rho_k^{\rm a} \rho_\ell^{\rm b} \,\mathrm{d}\tau. \tag{1}$$

In equation (1) ρ_k^a and ρ_ℓ^b denote the densities corresponding, respectively, to states Ψ_k^a and Ψ_ℓ^b of two quantum systems labeled as a and b. If a = b then equation (1) defines a measure of similarity between two states of the same quantum system. Furthemore, if $k = \ell$, the integral (1) defines a quantum self-similarity measure. Usually the densities depend upon both coordinates and spins of the electrons. The integration range Ω_{ab} covers the area over which the similarity index has been defined and, in most cases, it is the entire space of electron coordinates and spins.

The evaluation of the coordinate-dependent part of integral (1), from a technical point of view, does not present any particular difficulty – it usually may be reduced to some specific overlap-like integrals or to some other well known quantum-mechanical quantities [2]. Technical novelties may appear in connection with the integrals over spin variables. The aim of this note is to present an algorithm for the evaluation of the integrals

$$Q^{\sigma}[\Xi_k, \Xi_{\ell}] = \langle \Xi_k(\sigma) | \Xi_{\ell}(\sigma) \rangle$$
(2)

0259-9791/01/0100-0041\$19.50/0 © 2001 Plenum Publishing Corporation

over spin variables σ associated with the similarity index $Q[\rho_k^a, \rho_\ell^b]$.

2. Basic definitions

Let $\Theta(j, m)$ be a one-electron eigenfunction of the square of the angular momentum operator, \hat{J}^2 , and of its projection \hat{J}_z . Then, we have

$$\hat{J}^2 \Theta(j,m) = j(j+1)\Theta(j,m), \qquad \hat{J}_z \Theta(j,m) = m\Theta(j,m), \tag{3}$$

and

$$\langle \Theta(j,m) | \Theta(j',m') \rangle = \delta_{jj'} \delta_{mm'}.$$
 (4)

The functions corresponding to $j = \frac{1}{2}$ and $m = \frac{1}{2}, -\frac{1}{2}$ are denoted α and β :

$$\alpha \equiv \Theta\left(\frac{1}{2}, \frac{1}{2}\right), \qquad \beta \equiv \Theta\left(\frac{1}{2}, -\frac{1}{2}\right). \tag{5}$$

The ladder operators

$$\hat{J}_+ = \hat{J}_x + i\hat{J}_y$$
 and $\hat{J}_- = \hat{J}_x - i\hat{J}_y$

act on $\Theta(j, m)$ in the well-known manner:

$$\hat{J}_{+}\Theta(j,m) = \sqrt{j(j+1) - m(m+1)} \,\,\Theta(j,m+1),\tag{6}$$

$$\hat{J}_{-}\Theta(j,m) = \sqrt{j(j+1) - m(m-1)} \,\,\Theta(j,m-1). \tag{7}$$

For the purpose of this paper it is convenient to represent \hat{J}_+ and \hat{J}_- as differential operators acting in the spin space [3]:

$$\hat{J}_{+} = \alpha \frac{\partial}{\partial \beta}, \qquad \hat{J}_{-} = \beta \frac{\partial}{\partial \alpha}.$$
 (8)

The spin integrals appearing in evaluation of $Q[\rho_k^a, \rho_\ell^b]$ defined in equation (1) are, in general, reducible to

$$Q^{\sigma}\left[\Xi,\Xi'\right] = \prod_{j=1}^{N} \langle \Xi_{p_j q_j}(j) \big| \Xi_{p'_j q'_j}(j) \rangle, \tag{9}$$

where

$$\Xi_{p_j q_j}(j) = \alpha^{p_j}(j)\beta^{q_j}(j),\tag{10}$$

 α and β are the primitive one-electron spin functions and the index *j* refers to the *j*th electron.

Functions composed of products of p + q > 1 of the primitive one-electron spin functions will be referred to hereafter as the *generalized spin functions*. In order to evaluate integrals involving the generalized spin functions we express them in terms of the normalized eigenfuctions of the one-electron spin operators. For simplicity, these operators are denoted hereafter \hat{J}^2 and \hat{J}_z and their eigenfunctions are $\Theta(j, m)$.

3. Generalized one-electron spin functions

If we assume that

$$\Theta\left(\frac{n}{2},\frac{n}{2}\right) = f(j)\alpha^n\beta^0,\tag{11}$$

then, after acting on the right-hand-side of equation (11) with operator \hat{J}_{-} defined in equation (8) and transforming the left-hand-side according to equation (7), we get

$$\sqrt{n \cdot 1} \Theta\left(\frac{n}{2}, \frac{n}{2} - 1\right) = f(j)n \,\alpha^{n-1}\beta^{1},$$

$$\sqrt{n(n-1) \cdot 1 \cdot 2} \Theta\left(\frac{n}{2}, \frac{n}{2} - 2\right) = f(j)n(n-1)\alpha^{n-2}\beta^{2},$$

$$\sqrt{n(n-1)(n-2) \cdot 1 \cdot 2 \cdot 3} \Theta\left(\frac{n}{2}, \frac{n}{2} - 3\right) = f(j)n(n-1)(n-2)\alpha^{n-3}\beta^{3},$$
:

Hence, in general,

$$\Theta(j,m) = f(j) \sqrt{\frac{(2j)!}{(j+m)!(j-m)!}} \alpha^{j+m} \beta^{j-m},$$
(12)

with m = -j, -j + 1, ..., j and f(j) selected so that $\langle \Theta(j, m) | \Theta(j, m) \rangle = 1$.

The Clebsh–Gordan expansion for the spin functions $\Theta(j, m)$ may be written as [4]

$$\Theta(j,m) = \sqrt{\frac{j+m}{2j}} \,\Theta\big(j - \frac{1}{2}, m - \frac{1}{2}\big)\alpha + \sqrt{\frac{j-m}{2j}}\Theta\big(j - \frac{1}{2}, m + \frac{1}{2}\big)\beta.$$
(13)

By substitution of equation (12) to (13), after some simple algebra, we get

$$f(j)\sqrt{\frac{2j}{(j+m)(j-m)}} = f(j-\frac{1}{2})\left[\sqrt{\frac{j+m}{2j(j-m)}} + \sqrt{\frac{j-m}{2j(j+m)}}\right]$$

and from here

$$f(j) = f(j - \frac{1}{2}).$$
 (14)

Taking $j = \frac{1}{2}$, i.e., $m = \pm \frac{1}{2}$, equation (12) becomes

$$\Theta\left(\frac{1}{2},\frac{1}{2}\right) = f\left(\frac{1}{2}\right)\alpha, \qquad \Theta\left(\frac{1}{2},-\frac{1}{2}\right) = f\left(\frac{1}{2}\right)\beta$$

Then, due to equation (5), $f(\frac{1}{2}) = 1$. Consequently, by recursively using equation (14) we get f(j) = 1.

Equation (13) may be used for the genealogical construction of the one-electron spin functions $\Theta(j, m)$ from $\Theta(j - \frac{1}{2}, m')$. However, as we know from the general theory of coupling angular momenta, the angular momentum eigenstate $\Theta(j, m)$ may

also be obtained by coupling $\Theta(j + \frac{1}{2}, m \pm \frac{1}{2})$ with $\Theta(\frac{1}{2}, \pm \frac{1}{2})$. The resulting equation reads

$$\Theta(j,m) = -\sqrt{\frac{j-m+1}{2j+2}}\,\Theta\big(j+\frac{1}{2},m-\frac{1}{2}\big)\alpha + \sqrt{\frac{j+m+1}{2j+2}}\,\Theta\big(j+\frac{1}{2},m+\frac{1}{2}\big)\beta.$$
 (15)

As one can easily check by substitution of equation (12) in the right-hand-side of equation (15), in this case $\Theta(j, m) = 0$. This result is in agreement with equation (12): there is only one genealogical path of construction of a generalized spin function, defined by equation (13). If $\Theta(j, m)$ is multiplied by a primitive spin function then the value of j in the resulting generalized spin function always increases.

4. Integrals

Since all products of the primitive one-electron spin functions may be expressed in terms of $\Theta(j, m)$, all integrals involving these products may be evaluated by using the orthogonality relation given by equation (4). In order to illustrate the approach we elaborate in detail the case of N = 2.

Let us assume that Ψ_k^a is associated with a two-electron spin function $X_m^a(\sigma_1, \sigma_2)$ and Ψ_ℓ^b with $X_{m'}^b(\sigma_1, \sigma_2)$, where $\{X_m^a, X_{m'}^b\} = \{S_0, T_{-1}, T_0, T_1\}, \sigma_1, \sigma_2$ are spin coordinates of the electrons and

$$S_0(\sigma_1, \sigma_2) \equiv \frac{1}{\sqrt{2}} \Big[\alpha(\sigma_1)\beta(\sigma_2) - \beta(\sigma_1)\alpha(\sigma_2) \Big],$$

$$T_{-1}(\sigma_1, \sigma_2) \equiv \beta(\sigma_1)\beta(\sigma_2),$$

$$T_0(\sigma_1, \sigma_2) \equiv \frac{1}{\sqrt{2}} \Big[\alpha(\sigma_1)\beta(\sigma_2) + \beta(\sigma_1)\alpha(\sigma_2) \Big],$$

$$T_1(\sigma_1, \sigma_2) \equiv \alpha(\sigma_1)\alpha(\sigma_2).$$

According to equation (12), there are three generalized one-electron spin functions which may be constructed from products of two primitive one-electron spin functions:

$$T_{-1}(\sigma_1) \equiv \Theta(1, -1) = \alpha^2,$$

$$T_0(\sigma_1) \equiv \Theta(1, 0) = \sqrt{2} \ \alpha\beta,$$

$$T_1(\sigma_1) \equiv \Theta(1, 1) = \beta^2.$$

Let us note that

$$T_m(\sigma_1) = \lim_{\sigma_2 \to \sigma_1} T_m(\sigma_1, \sigma_2).$$
(16)

Due to equations (13) and (15) the analogous rule also applies in the general case.

After some simple algebra we get

$$\begin{aligned} \left| S_0(\sigma_1, \sigma_2) \right|^2 &= \frac{1}{2} \Big[T_1(\sigma_1) T_{-1}(\sigma_2) - T_0(\sigma_1) T_0(\sigma_2) + T_1(\sigma_1) T_{-1}(\sigma_2) \Big] \\ \left| T_{-1}(\sigma_1, \sigma_2) \right|^2 &= T_{-1}(\sigma_1) T_{-1}(\sigma_2), \end{aligned}$$

E. Besalú et al. / Generalized one-electron spin functions

$$\left| T_0(\sigma_1, \sigma_2) \right|^2 = \frac{1}{2} \left[T_1(\sigma_1) T_{-1}(\sigma_2) + T_0(\sigma_1) T_0(\sigma_2) + T_1(\sigma_1) T_{-1}(\sigma_2) \right],$$

$$\left| T_1(\sigma_1, \sigma_2) \right|^2 = T_1(\sigma_1) T_1(\sigma_2).$$
(17)

Consequently,

$$Q^{\sigma} \Big[\big| X_m(\sigma_1, \sigma_2) \big|^2, \, \big| X'_{m'}(\sigma_1, \sigma_2) \big|^2 \Big] = \frac{3 + |m|}{4} \, \delta_{XX'} \delta_{mm'}, \tag{18}$$

where $\{X, X'\} = \{S, T\}$ and $Q^{\sigma} [X_m, X'_{m'}]$ is defined in equation (2).

A generalization of this procedure to a many-electron case is straightforward, though specific implementations may be tedious if N is sufficiently large. Using equation (12) we can transform an arbitrary product of the primitive one-electron spin functions α and β of a given electron to a normalized function $\Theta(j, m)$. Then, applying equation (4) one can perform all the integrations involved.

Acknowledgements

The authors want to acknowledge the Foundation M.F. de Roviralta as well as the European Commision contract # ENV4-CT97-0508, the CICYT project #SAF2000-223 and the Polish KBN project # 2 P03B 126 14 which have supported this work. The visiting professorship provided for one of us (J.K.) by CEPBA is also gratefully acknowledged.

References

- R. Carbó-Dorca and E. Besalú, Extended Sobolev and Hilbert spaces and approximate stationary solutions for electronic systems with the non-linear Schrödinger equation, Institute of Computational Chemistry, Technical report IT-IQC-00-25.
- [2] R. Carbó-Dorca, Ll. Amat, E. Besalú, X. Gironés and D. Robert, J. Mol. Structure (Theochem) 504 (2000) 181.
- [3] R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
- [4] A. Messiah, Mécanique Quantique, Vol. 2 (Dunod, Paris, 1960).